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ABSTRACT 

Two robust procedures for testing the equality of central tendency measures, namely 
T1 and trimmed F (noted as Ft) statistics are proposed in this paper.  The T1 and Ft 

statistics were modified using variable trimming with indeterminate percentage. The 
variable trimming percentages were based upon trimming criteria using robust scale 
estimators, MADn and Tn.  Altogether there are four procedures investigated: T1 with 
MADn, T1 with Tn, Ft with MADn, and Ft with Tn. Concentrating on just balanced 

design and unequal population variances, the four procedures were tested for their 
Type I error under different types of distributional shapes and total sample sizes.  
This study used 5000 simulated data sets to generate the Type I error.  Since T1 
distribution is unknown, bootstrap method was employed to test the hypothesis.  The 
findings showed that T1 statistic works well under normal tail distribution, while Ft 
statistic is good for extremely skewed distribution. 
 
Keywords: variable trimming, robust scale estimators, extreme distribution. 

 
 

INTRODUCTION 

There are varieties of definitions for robust statistics that have been 

found in the literature and these unfortunately lead to the inconsistency of its 

meaning. Most of the definitions are based on the objective of the particular 

study by different researchers (Huber, (1981)). The robust method is in fact 
an alternative to a classical method with the aim of producing estimators 

which cannot be influenced by the deviations from the given assumptions 

when hypothesis testing is being conducted. 
 

A statistical method is considered robust if the inferences are not 

seriously invalidated by the violation of such assumptions, for instance non 
normality and variance heterogeneity (Scheffe, (1959)). Huber, (1981) 

defined robustness as a situation which is not sensitive to small changes in 
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assumptions while Brownlee, (1965) reported slight effects on a procedure 

when appreciable departures from the assumptions were observed.  
 

The theory of robust statistics deals with deviations from the 

assumptions on the model and is concerned with the construction of 
statistical procedures which is still reliable and reasonably efficient in a 

neighborhood of the model (Ronchetti, (2006)). Hampel et al., (1986), stated 

that in a broad informal sense, robust statistics is a body of knowledge, 

partly formalized into “theories of robustness” relating to deviations from 
idealized assumptions in statistics. As mentioned by Hoel et al., (1971), a 

test that is reliable under rather strong modifications of the assumptions on 

which it was based is said to be robust.  
 

Robust statistics has widely been used for many years now (Stigler, 

(1973)). Ronchetti, (2006) reported that research in robust statistics 

problems have been conducted since 40 years ago. However, there is no 
specific research on the robust statistics problems until the recent years 

(Staudte and Sheather, (1990)). Research about robust statistics is still 

active. In Ronchetti’s , (2006) quick search in the Current Index of Statistics, 
1617 papers on robust statistics between 1987 and 2001 in statistics journals 

and related fields were listed. 

 
To date, there are several new procedures that were developed to deal 

with central tendency measures such as group trimmed means, group median 

or group M-measures of location. Among the latest procedures are the 

modified MOM-H statistic introduced by Syed Yahaya et al., (2004) and a 
robust test due to Lee and Fung, (1985) based on a priori determined 

symmetric or asymmetric trimming strategies introduced by Keselman et al., 

(2007). These methods used trimmed means as the central tendency 
measures and were proven to have good control of Type I error rates when 

comparing for the differences between distributions. In this study, we 

compare the performance of T1 statistic developed by Babu et al., (1999) and 
Ft statistic introduced by Lee and Fung, (1985) in asymmetric variable 

trimming. The trimming criterion is based on three robust scale estimators: 

MADn and Tn (Rousseeuw and Croux, (1993)). Unlike trimmed means, when 

using the aforementioned trimming criterion, no predetermined trimming 
percentage is needed.  

 

TRIMMING 

Trimmed mean is a central tendency measure to summarize data 

when trimming is carried out. By using the trimmed means, the effect of the 
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tails of the distribution is reduced by removing the extreme observations 

based on the predetermined amount. The common trimmed mean used the 
predetermined method for trimming. By using this method, amounts such as 

10% or 20% of the observations from a distribution will be trimmed from 

both tails. In the case of a light-tailed distribution or the normal distribution, 

it may be desirable to trim a few observations or none at all. There is 
extensive literature regarding the trimming method that uses the 

predetermined amount of symmetric trimming. Among them are Lee and 

Fung, (1985), Keselman et al., (2002) and Wilcox, (2003).  
 

If we have skewed distributions then the amounts of trimming on 

both tails should be different, namely more should be trimmed from the 
skewed tail. However, if the predetermined symmetric trimming is used, 

regardless of the shape of the tails, the trimming is done symmetrically as 

set. A recent research by Keselman et al., (2007) used asymmetric trimming 

and in particular, applying hinge estimators proposed by Reed and Stark, 
(1996) to determine the suitable amount of trimming on each tail of a 

distribution. However, their method still used predetermined trimming 

percentages.  
 

The trimmed mean is not so robust because the breakdown point of 

trimmed mean is just as much as the percentage of trimming and this shows 
that trimmed mean cannot withstand large numbers of extreme value. 

Wilcox et al., (2000) in their study stated that when comparing trimmed 

means versus means with actual data, the power of the trimmed mean 

procedure was observed to be greatly increased. They also discovered that 
there was improved control over the probability of a Type I error. 

 

The question that always remains unanswered is “How can we 
determine the best percentage of trimming that would ensure good Type I 

error control and reasonable power?” A probable answer lies in trimming 

carried out for the calculation of modified one-step M - estimators (MOMs). 

Here trimming is based upon a trimming criterion that relies upon a robust 
scale estimator known as MADn (Wilcox and Keselman, (2002)). With this 

method of trimming we do not have to predetermine the amount of trimming 

required. The criterion will identify how many extreme values need to be 
removed from the distribution.  
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METHODS  

This paper focuses on the T1 and Ft statistics with variable trimming 

using several robust scale estimators as trimming criteria, namely MADn and 

Tn. These two statistics (T1 and Ft) were compared in terms of Type I error 

under conditions of normality and non-normality which will be represented 
by the g- and h- distributions.  

  

T1 statistic 

Let (1) (2) ( ), ,...,
jj j n jX X X  be an ordered sample of group j with size nj. First, 

calculate the g-trimmed mean of group j by using: 
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 = median of group j and the scale estimator in the parentheses can be     

MADn or Tn.  

 

Then, compute the sample Winsorized standard error.  The squared sample 
Winsorized standard error is defined as 
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The T1 statistic (Babu et al., 1999) is given by 

 

 T1 = '

1 '

| |jj

j j J

t
≤ ≤ ≤

∑ ,       

where 
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+
  

      

T1 is the sum of all possible differences of sample trimmed means from J 

distributions divided by their respective sample Winsorized standard errors. 

With J distributions, the number of tjj’s is equal to J (J-1)/2.  Note that 
trimmed means are used in the Winsorized standard errors formula instead 

of Winsorized means.  

 

Ft statistic 

Let (1) (2) ( ), ,...,
jj j n jX X X  be an ordered sample of group j with size nj. The 

g-trimmed mean of group j is calculated by using the same formula as in the 

T1 statistic i.e.: 
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The Winsorized sum of squared deviations for group j is then defined as, 
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Note that we applied the trimmed means in SSDtj formula instead of the 
Winsorized means. 
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Hence the trimmed F statistic (Lee and Fung, (1985)) is defined as 
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J = number of groups, 1 2j j j jh n g g= − − ,
1
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J
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=∑ . Ft(g) will follow approximately an F distribution with (J 

– 1, H – J) degrees of freedom.   
 

Robust scale estimators 

The value of a breakdown point is the main factor to be considered when 
looking for a scale estimator (Wilcox, (2005)). Rousseeuw and Croux, 

(1993) have introduced several scale estimators with highest breakdown 

point, such as MADn and Tn. Due to their good performance in Rouseeuw 
and Croux, (1993) and Syed Yahaya et al., (2004), the aforementioned scale 

estimators were chosen for this study. These scale estimators have 0.5 

breakdown value and also exhibit bounded influence functions. These 

estimators were also chosen due to their simplicity and computational ease. 
 

i. MADn 

             
MADn is the median absolute deviation about the median. It demonstrates 

the best possible breakdown value of 50%, twice as much as the 

interquartile range and its influence function is bounded with the sharpest 

possible bound among all scale estimators (Rousseeuw and Croux, 
(1993)).  

 

This robust scale estimator is given by 
 

 medn i i j jMAD b x med x= −   

 
where the constant b is needed to make the estimator consistent for the 

parameter of interest.  
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However, this estimator is not free from drawbacks. The efficiency of 

MADn is very low with only 37% at Gaussian distribution. It also takes a 
symmetric view on dispersion and does not seem to be a natural approach 

for problems with asymmetric distributions. 

 

ii. Tn 
 

nT  for asymmetric distribution, Rousseeuw and Croux, (1993) proposed 

,nT a scale known for its highest breakdown point like MADn.  However, 

this estimator has more plus points compared to MADn. It has 52% 

efficiency, making it more efficient than MADn. It also has a continuous 

influence function.   
 

Given as 

( ).

1

1
1.3800   { | |}

h

n i j k
j i

k

T med x x
h ≠

=

= −∑  where
 

1
2

n
h

 
= +    

 

nT has a simple and explicit formula that guarantees uniqueness. This 

estimator also has 50% breakdown point.  

 
 

EMPIRICAL INVESTIGATION 

The asymptotic sampling distributions for T1 and Ft are known and 

have been derived in Babu et al., (1999) and Lee and Fung, (1985), 

respectively. Knowing this we are still unable to determine how these two 

statistics will perform when the group sample sizes are small, let alone the 
modifications of these two statistics to accommodate automatic trimming. 

Hence, this paper focuses on the performance of these modified statistics on 

two groups with small but equal sample sizes. Two groups of size N = 30 
and N = 40 are chosen. Therefore, when N = 30, the sample sizes are set at 

n1 = n2 = 15 and when N = 40, they are set at n1 = n2 = 20.  

 
The next consideration is the heterogeneity of variances of the two 

groups. Starting from the commonly use rule of thumb that variances 

between two groups are heterogeneous if one group variance is four times 

the other, we can say that ratios of 1:9, 1:16, etc., ensured heterogeneity. 
However, these ratios have been routinely used in past studies. Thus, we 

chose 1:36 conveniently and at the same time ensured extreme 

heterogeneity. Even though the selected ratio seemed large, based on the 
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previous literature, higher ratio than 1:36 had been used by other researchers 

in their study (Keselman et al., (2007)). In addition, it will also provide 
researchers with information regarding how well the methods hold up under 

any degree of heterogeneity they are likely to obtain in their data, thus 

providing a very generalizable result (Keselman et al., (2007)). Table 1 
shows the design specifications used in this study. 

 

The Tukey’s g- and h- distribution (Hoaglin, (1985)) is based on a 

transformation of a standard normal variable Z to 
2 / 21gz

hz

z

e
Y e

g

−
= where g 

controls the skewness and h effects the tail weights. When g = 0, the random 

variable Yz is symmetric with increasingly heavy tails as h increases. We 

compare the performance of the T1 and Ft statistics under three types of g- 
and h- distributions: (i) g = 0.0, h = 0.0 (normal), (ii) g = 0.5, h = 0.0 

(skewed distribution) and (iii) g = 0.5, h = 0.5 (skewed leptokurtic). These 

distributions are transformations of the standard normal distribution. By 

manipulating the g- parameter one can transform the standard normal 
distribution into a skewed distribution. In addition to this one can also 

transform the standard normal distribution into a heavy tailed distribution by 

changing the h- parameter. When testing for the T1 and Ft procedures, 5000 
datasets were simulated and 599 bootstrap samples were generated for each 

of the designs. The random samples were drawn using SAS generator 

RANNOR (SAS institute, 1989). 

 
To obtain the p-value of the T1 statistic by using the percentile 

bootstrap method, the steps are as follows: 

 
(a) Calculate T1 based on the available data. 

 

(b) Generate bootstrap samples by randomly sampling with 

replacement nj observations from the j
th group 

yielding
*

)(

*

)2(

*

)1( ,...,, jnjj j
XXX . 

 

(c) Each of the sample points in the bootstrapped groups must be 

centered at their respective estimated trimmed means so that the 
sample trimmed mean is zero, such 

that jtjijij niXXC ,...,2 ,1    ,**
=−= . The empirical distributions 

are shifted so that the null hypothesis of the equal trimmed means 
among the J distributions is true. The strategy behind the 

bootstrap is to use the shifted empirical distributions to estimate 

an appropriate critical value. 
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(d) Let 
*

1T be the value of T1 test based on the 
*
ijC values. 

 

(e) Repeat Step (a) to Step (d) B times yielding * * *
(1)1 (1)2 (1), ,..., BT T T . B = 

599 appears sufficient in most situations when 12jn ≥  (Wilcox, 

2005). 

(f) Calculate the p-value as number of 
*

1 1BT T

B

>
. 

 

The calculated p-values are the estimated rates of Type I error for the 

procedures investigated under the T1 statistic.  Hall, (1986) also stated that it 

is advantageous to choose B such that the nominal level, α  , is a multiple 

of ( )
1

1B
−

+ .  Efron and Tibshirani, (1993) suggested that B should be at least 

500 or 1000 in order to make the variability of the estimated percentile 

acceptably low.  In this study, B is set to be 599 with the reason that 599 is 

the lowest value that can make α  a multiple of ( )
1

1B
−

+ based on 

suggestion by Efron and Tibshirani, (1993).  Furthermore, trials on various 

numbers of bootstraps from B = 599 to 999 with the increment of 100 found 

that the p-values for different number of bootstraps are consistent.  Thus, to 
save the running time, this study chose for the smallest B in the range. 
 

The steps to obtain the p-value for the procedures under Ft statistic 

are enumerated below. 

 

(a) Based on the available data, calculate the Ft statistic. 
(b) Calculate the degree of freedom for the available data.  

(c) Determine the p-value of the calculated Ft statistic for two groups 

cases. 
 

The calculated p-value represents the estimated rate of Type I error 
for the procedures investigated under the Ft statistic.  

 
 TABLE 1: Design Specifications for the Two Groups. 

 

N GROUP SIZES 
GROUP 

VARIANCES 

 1 2 1 2 

30 15 15 1 36 

40 20 20 1 36 
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RESULTS AND CONCLUSION 

Table 2 displays the empirical Type I error rates for all the 

procedures across the three distributions. Based on Bradley’s liberal 

criterion of robustness (Bradley, (1978)), a test can be considered robust if 

the rate of Type I error,α
⌢

 is within the interval 0.5α  and 1.5α . For the 

nominal level of α = 0.05, the Type I error rates should be between 0.025 

and 0.075. Values that fall within the Bradley’s criterion were highlighted, 

and the average values that satisfy the criterion were also underlined.  

 
TABLE 2: Type I error rates  

 

 

N = 30 N = 40 

N = 30(15, 15) 

Variance = (1:36) 

N = 40(20, 20) 

Variances = (1:36) 

Distribution 
T1 with scale 

estimator 
Ft with scale 

estimator 
T1 with scale 

estimator 
Ft with scale estimator 

 MADn Tn MADn Tn MADn Tn MADn Tn 

g = 0.0, 

h = 0.0 
0.0248 0.0272 0.1152 0.1106 0.0298 0.0320 0.1112 0.1012 

g = 0.5, 

h = 0.0 
0.0332 0.0326 0.1460 0.1392 0.0414 0.0448 0.1320 0.1270 

g = 0.5, 
h = 0.5 

0.0164 0.0144 0.0650 0.0614 0.0192 0.0214 0.0622 0.0558 

 
Average 

 

0.0248 

 
0.0247 

 
0.1087 

 
0.1037 

 

0.0301 

 

0.0327 

 
0.1018 

 
0.0947 

 

According to the table, all of the p-values for T1 statistic with variable 

trimming, Tn and MADn fell within the Bradley’s liberal criterion of 
robustness for both total sample sizes. T1 also works well with the MADn and 

Tn trimming criterion as long as the tail of the distribution is normal. When 

the tail became heavier (g = 0.5 h = 0.5), the results for the two procedures 

(MADn and Tn) become more conservative.  
 

The Ft statistic shows better performance in controlling Type I error 

rates when the distribution is extremely skewed. All of the p-values for this 
distribution fell within the Bradley’s interval. However, the performance 

diminishes when the distributions have normal tail.  Under this condition all 

the other p-values for Ft procedure become liberal. We also observed some 
progress in the result for both statistics (Ft and T1) when total sample size 

increased.  
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Comparing the performance of the two statistics, the rates of Type I 

error for T1 statistic is better than the Ft statistic for the non-extreme 
distributions i.e. g = 0.0, h = 0.0 and g = 0.5 and h = 0.0, and vice versa for 

the extremely skewed distribution (g = 0.5 and h = 0.5). 

 

To avoid unnecessary trimming, we suggest the T1 statistic with Tn 
when the distribution is non-extreme as this procedure provided the nearest 

Type I error rates to the nominal level. Conversely, investigation on the Ft 

statistic discovered that Ft works very well with Tn under extremely skewed 
distribution. These trimming criteria serve as alternatives to predetermined 

trimming methods, especially in handling problems with non-normality and 

variance heterogeneity.  
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